

Agenda

- Alkali Metal Heat Pipes for Radioisotope Systems
- Water Heat Pipes for Radioisotope and Fission Systems
- Waste Heat Recovery by Thermo-Radiative Cell for Radioisotope Applications

Alkali Metal Heat Pipes for Radioisotope Systems

- On a previous Phase II program, ACT developed a Variable Conductance Heat Pipe (VCHP) for Radioisotope Systems
 - Allows convertors to be shut down while loading the GPHS bricks
 - Allows convertors to be shut down to eliminate vibration and electrical interference during scientific measurements
 - Can also be used to reduce hot shoe mass
 - Could be used with other radioisotopes, for shorter term missions
- Have not demonstrated ability to withstand high accelerations
 - 20 g for 1 minute, 5 g for days
- ACT believes that it will be easy to modify for 5 g
- 20 g may not be a problem, due to the thermal capacitance of the system

ASRG Backup Cooling Concept

- Normal operation with the Stirling On and VCHP attached is shown in the left picture
 - VCHP transfers heat from the GPHS to the Stirling heater head
- When the Stirling is turned off the VCHP passively rejects the continuous heat generated by the GPHS (right picture) via the radiator
 - VCHP passively rejects this heat to the Cold Side Adaptor Flange (CSAF) with a small increase in the working fluid vapor temperature

ADVANCED COOLING TECHNOLOGIES, INC.

VCHP Prototype Introduction

- VCHP annulus slides over the Stirling heat collector
- VCHP transfers heat from the heated cylinder to the Stirling heat collector during normal operation
 - Nominal heat path is shown, the top of the VCHP is the evaporator and the inner wall is the condenser
 - When the Stirling is off the heat /sodium vapor will go down the 3/8" tube on the right to the radiator that rejects to the CSAF assembly

VCHP Layout with Stirling

Insulation Container

- VCHP layout shown with the Stirling and CSAF assembly
- VCHP consists of the annulus, 3/8" connecting tube, radiator, ¼" connecting tube and the reservoir
 - All components except the valve are inside of the insulation container (flight ready hardware would not require a valve)

VCHP Mass

- The mass of the VCHP as built (minus the weight of the valve)
 - 0.79 lbs (358 grams)
 - *Includes the VCHP body, screen & sodium weight
 - * Valve weight is not included as flight ready hardware would be sealed and not required the valve
- VCHP is semi mass optimized to reduce risks during the program
 - Further weight optimization is possible
 - ★ Reduce structural FOS
 - Currently 2+
 - Use superalloys with high strength at high temperatures to reduce wall thickness
 - ★ Thinner two-phase radiator
 - ★ Spherical reservoir

Transient Test Results with VCHP & Stirling Convertor

- Stirling convertor starts on and is cycled off to demonstrate how the VCHP is passively activated and able to bypass the heat directly to the CSAF assembly
 - The Stirling convertor
 was turned off between
 15500 s and 21000
 - The radiator temperature increases to reject the heat directly to the CSAF assembly
 - System recovers well
 - Only parameter modified during testing is turning on or off the Stirling simulator air cooling

Steady State Results with Stirling Convertor On

 Temperature profile of the VHCP and hardware is shown for steady state conditions with the Stirling simulator On

- NCG front is at the inlet of the evaporator, visible by the sharp drop in temperature at TC 105
- Radiator temp. is significantly lower that the evaporator limiting the unwanted heat transfer through the radiator to the CSAF assembly

Steady State Results with Stirling Simulator Off

- Temperature profile of the VHCP and hardware is shown for steady state conditions with the Stirling simulator Off
- NCG front is in the radiator, visible by the sharp drop in temperature at TC 112
- Radiator is active rejecting the heat to the CSAF assembly

Transient Test Results with VCHP & Stirling Convertor

- Repeatability of the VCHP-Stirling behavior is shown.
 - Stirling engine was cycled off three times
 - ~5000s was the duration of one cycle
 - The radiator temperature increases to reject the heat directly to the CSAF assembly
 - System recovers well each time
 - Only parameter modified during testing is turning on or off the Stirling simulator air cooling

Agenda

- Alkali Metal Heat Pipes for Radioisotope Systems
- Water Heat Pipes for Radioisotope Systems
- Waste Heat Recovery by Thermo-Radiative Cell for Radioisotope Applications

Water Heat Pipes for Radioisotope Systems

- Al/Ammonia heat pipes are the standard microgravity heat pipe
 - Maximum operating temperature of 80°C
 - Not suitable for radioisotope systems
- Since 2003, ACT has been working with NASA GRC to develop higher temperature heat pipes and radiators for fission power applications
 - Titanium/Water and Monel/Water, operating at temperatures up to 270°C
 - Life tests at 270°C for 7 years successfully completed
 - Analysis by GRC showed no problems
 - >> 20 year life at radioisotope system operating temperatures
 - Water heat pipes now have flight heritage
 - Can survive thousands of freeze/thaw cycles

Water Heat Pipes for Radioisotope Systems

- Also have developed low-mass, high-performance radiators
 - Graphite Fiber Reinforced Composite GRFC (up to twice the thermal conductivity of aluminum)
 - Pipes to the right are gravity aided thermosyphons
- With a screen wick, can operate 25 cm against 1 g
 - Suitable length for a radioisotope system
- Can embed small heat pipes in plates to boost conductivity
 - 600 to 1200 W/m K for aluminum
- Could be used in radioisotope systems at higher g, if arrange so that some of the heat pipes are gravity aided.

Agenda

- Alkali Metal Heat Pipes for Radioisotope Systems
- Water Heat Pipes for Radioisotope and Fission Systems
- Waste Heat Recovery by Thermo-Radiative Cell for Radioisotope Applications

Thermo-Radiative Cell Overview

- We have developed a new concept for converting waste heat to electricity suitable for applications that radiate to deep space
- The technology works similar to a photovoltaic cell, but instead of generating electricity during photon absorption, electricity is generated during photon emission
- Modeling results to date show that you can get considerable additional power output without increasing the system weight and thermal resistance, when integrating TR cell and Hi-K plate in ASRG
- We have validated the concept and want to discuss the integration of system with Radioisotope Convertor experts

How to efficiently make use of the space waste heat?

Radioisotope Convertors: waste heat around 100-200°C.

In space, dark universe (3K) could provide a robust heat sink.

• The communication between the heat source and heat sink is radiation.

Thermo-Radiative Cell

Thermo-Radiative (TR) Cell Concept

- Thermo-radiative cell was proposed by R. Strandberg (JAP, 2015)
- Net photon flux: from cell to environment (TR cell) **VS.** from environment to cell (PV cell)
- Generated current and voltage directions in TR cell are opposite to the PV cell
- TR cell is anticipated to have better performance at high temperature

Thermo-Radiative Cell Performance

- The power density of TR cell increases rapidly with temperature.
- Predicted efficiency at peak power is 18%, almost 3X of MMRTG. Could be much higher at lower power output.

If Integrated with ASRG

ASRG Dimension: 76cm * 46cm * 39cm

- Waste heat is conducted from CSAF to the Beryllium housing.
- Current CSAF is made of Copper (TC=400 W/mK)
- Thickness of the CSAF is about ¼"
- Inner diameter: 4"
- CSAF height: 16"
- Four of the 8 edges is in contact with Beryllium housing.

* Some parameter values are based on estimation.

Performance Improvements When Integrated with ASRG

	Current ASRG
Hot Side	850°C
Cold Side	130°C
Efficiency	30%
Two GPHS	2*250 W
Each CSAF Dissipates	175 W
Edge of CSAF Temperature	
	113°C (simulation)
CSAF R_{th}	0.097 °C/W
Beryllium Housing & Fins R_{th} (including radiation)	0.629 °C/W

- We could integrate the TR cell on top of the Beryllium housing, and replace the copper (400W/mK) by Hi-K plate (1200W/mK)to make the CSAF.
- The surface emissivity of TR cell can be fabricated to be ~0.85, similar to the Beryllium housing emissivity. No or negligible change on the radiation thermal resistance.
- Using Hi-K plate to make CSAF can reduce R_{th}^{CSAF} from 0.097 °C/W to 0.032 °C/W. The total thickness of TR cell is 1/4" (including TIM layer). The addition of conduction resistance by TR cell (~10W/mK)is much smaller than the reduction of CASF resistance by Hi-K plate.

- **Conclusion:** 1) Cold side temperature of ASRG will even be decreased if we use Hi-K plate to make CSAF.
 - 2) The weight increase by TR cell will be offset by weight reduction of using Hi-K plate.
 - 3) And ASRG system will get additional 45W power output by TR cell integration

Performance Improvements When Combined with MMRTG

Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)

Mass = 43 kg, Diam = 64 cm, Length = 66 cm

MMRTG

temperature is ~450K, under ideal situation: It could provide additional electrical power ~110W. $T_{hot} = 530^{\circ} \text{C}$ • It could boost the system efficiency from 6% to 12%, while $T_{cold} = 200$ °C the future e-MMRGT goal is 8%.

> Or it could reduce the Pu-238 weight by more than 50% if still sustain the 110W output.

If integrate TR cells with MMRTG fins, assuming the cell

It could also be integrated with mW-class Radioisotope Heating Unit (mW-RHU).

 $\eta = 6\%$

 $P = 110W_{e}$

Proof-of-Concept Demonstration

Whole system setup without chamber

Side View (within chamber)

Thermoradiative cell

During the tests, the cell (HgCdTe) is placed in a chamber, which has a low flow of dry nitrogen to reduce the humidity in the chamber.

Experimental Results (ON/OFF Response)

Example measurement at -50°C

- The cell is kept at room temperature (RT = 295K)
- The cold plate surface is change from RT to -150C (TR mode); from RT to 80C (PV mode)
- Output signal increases from 0.3mV to 29.2mV (TR mode); from 0.3mV to 81.1mV (PV mode)

Measured Photocurrent in the Cell

When $T_{surr} < T_{cell}$, it works as Thermo-Radiative cell

When $T_{surr} > T_{cell}$, it works as Photo-Voltaic cell

I-V Characteristics Measurements

I-V Measurement Results

The TR cell short-circuit current is around 450nA, much smaller than previous 3 μA , due to the larger band gap of the cell.

Discussion

- We successfully demonstrated the validity of thermo-radiative cell concept via ON/OFF response & I-V measurement.
 - Currently at TRL 3
- Short circuit current increases from 60nA to $3\mu A$ when the bandgap of cell (ambient condition, 0.01mm^2) changes from 0.32 eV to 0.21 eV.
- $Hg_{1-x}Cd_xTe$ p-n junction is used in our demonstration. Bandgap can be tuned between 0-1.5eV, depending on x. However, material fabrication may be challenge.
- Plan to optimize the cell performance and fabricate a larger TR cell prototype (Ø.5") if we get Phase II funding.
- Looking for support from NASA
 - No communications with COTR

