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Agenda
 Alkali Metal Heat Pipes for Radioisotope Systems
Water Heat Pipes for Radioisotope and Fission Systems
Waste Heat Recovery by Thermo-Radiative Cell for Radioisotope 

Applications
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Alkali Metal Heat Pipes for Radioisotope Systems
On a previous Phase II program, ACT developed a Variable 

Conductance Heat Pipe (VCHP) for Radioisotope Systems
 Allows convertors to be shut down while loading the GPHS bricks
 Allows convertors to be shut down to eliminate vibration and electrical 

interference during scientific measurements
 Can also be used to reduce hot shoe mass
 Could be used with other radioisotopes, for shorter term missions

Have not demonstrated ability to withstand high accelerations
 20 g for 1 minute, 5 g for days

 ACT believes that it will be easy to modify for 5 g 
 20 g may not be a problem, due to the thermal capacitance of the 

system
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ASRG Backup Cooling Concept

 Normal operation with the Stirling On and VCHP attached is shown in the left picture
– VCHP transfers heat from the GPHS to the Stirling heater head

 When the Stirling is turned off the VCHP passively rejects the continuous heat generated by the 
GPHS (right picture) via the radiator
– VCHP passively rejects this heat to the Cold Side Adaptor Flange (CSAF) with a small increase 

in the working fluid vapor temperature
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VCHP Prototype Introduction
 VCHP annulus slides over the Stirling heat collector
 VCHP transfers heat from the heated cylinder to the Stirling heat collector during 

normal operation
– Nominal heat path is shown, the top of the VCHP is the evaporator and the inner 

wall is the condenser
– When the Stirling is off the heat /sodium vapor will go down the 3/8” tube on the 

right to the radiator that rejects to the CSAF assembly
Heater Cylinder

VCHP Outer wall

Stirling Heat Collector

VCHP Inner wall
& Condenser
(nickel 201)

Evaporator Path to radiator
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 VCHP layout shown with the Stirling and CSAF 
assembly

 VCHP consists of the annulus, 3/8” connecting tube, 
radiator, ¼” connecting tube and the reservoir

– All components except the valve are inside of the insulation 
container (flight ready hardware would not require a valve)

VCHP Layout with Stirling
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Side View

Radiator (hollow)

Reservoir

VCHP Annulus

Venting 
Valve

Stirling

3/8” Connecting Tube

1/4” Connecting Tube

CSAF Assembly

Insulation Container

Cooling Jackets



7
ADVANCED COOLING TECHNOLOGIES, INC.

VCHP Mass

 The mass of the VCHP as built (minus the weight of the valve) 
– 0.79 lbs (358 grams)

 Includes the VCHP body, screen & sodium weight
Valve weight is not included as flight ready hardware would be sealed and not required the valve

 VCHP is semi mass optimized to reduce risks during the program
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– Further weight optimization is possible
Reduce structural FOS 

– Currently 2+  
Use superalloys with high strength at high 

temperatures to reduce wall thickness
Thinner two-phase radiator
Spherical reservoir



8
ADVANCED COOLING TECHNOLOGIES, INC.

Transient Test Results with VCHP & Stirling Convertor

 Stirling convertor starts on and is cycled off to demonstrate how the VCHP is passively activated and able 
to bypass the heat directly to the CSAF assembly
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– The Stirling convertor 
was turned off  between 
15500 s and 21000

– The radiator temperature 
increases to reject the 
heat directly to the CSAF 
assembly 

– System recovers well  
– Only parameter modified 

during testing is turning 
on or off the Stirling
simulator air cooling
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Steady State Results with Stirling Convertor On
 Temperature profile of the VHCP and hardware is shown for steady state conditions 

with the Stirling simulator On
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 NCG front is at the inlet 
of the evaporator, visible 
by the sharp drop in 
temperature at TC 105

 Radiator temp. is 
significantly lower that 
the evaporator limiting 
the unwanted heat 
transfer through the 
radiator to the CSAF 
assembly
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Steady State Results with Stirling Simulator Off
 Temperature profile of the VHCP 

and hardware is shown for steady 
state conditions with the Stirling 
simulator Off
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 NCG front is in the 
radiator, visible by 
the sharp drop in 
temperature at TC 
112

 Radiator is active 
rejecting the heat 
to the CSAF 
assembly
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Transient Test Results with VCHP & Stirling Convertor

 Repeatability of the VCHP-Stirling behavior is shown.
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– Stirling engine was cycled 
off three times

– ~5000s was the duration 
of one cycle 

– The radiator temperature 
increases to reject the 
heat directly to the CSAF 
assembly 

– System recovers well each 
time 

– Only parameter modified 
during testing is turning on 
or off the Stirling simulator 
air cooling
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Agenda
 Alkali Metal Heat Pipes for Radioisotope Systems
Water Heat Pipes for Radioisotope Systems
Waste Heat Recovery by Thermo-Radiative Cell for Radioisotope 

Applications
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Water Heat Pipes for Radioisotope Systems
 Al/Ammonia heat pipes are the standard microgravity heat pipe
 Maximum operating temperature of 80°C
 Not suitable for radioisotope systems 

 Since 2003, ACT has been working with NASA GRC to develop higher 
temperature heat pipes and radiators for fission power applications
 Titanium/Water and Monel/Water, operating at temperatures up to 270°C
 Life tests at 270°C for 7 years successfully completed 
 Analysis by GRC showed no problems
 >> 20 year life at radioisotope system operating temperatures
 Water heat pipes now have flight heritage
 Can survive thousands of freeze/thaw cycles
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Water Heat Pipes for Radioisotope Systems
 Also have developed low-mass, high-performance 

radiators
 Graphite Fiber Reinforced Composite GRFC (up to 

twice the thermal conductivity of aluminum)
 Pipes to the right are gravity aided thermosyphons

With a screen wick, can operate 25 cm against 1 g
 Suitable length for a radioisotope system

 Can embed small heat pipes in plates to boost 
conductivity
 600 to 1200 W/m K for aluminum

 Could be used in radioisotope systems at higher g, 
if arrange so that some of the heat pipes are 
gravity aided.
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Agenda
 Alkali Metal Heat Pipes for Radioisotope Systems
Water Heat Pipes for Radioisotope and Fission Systems
Waste Heat Recovery by Thermo-Radiative Cell for Radioisotope 

Applications
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Thermo-Radiative Cell Overview
We have developed a new concept for converting waste heat to 

electricity suitable for applications that radiate to deep space
 The technology works similar to a photovoltaic cell, but instead of 

generating electricity during photon absorption, electricity is 
generated during photon emission
Modeling results to date show that you can get considerable 

additional power output without increasing the system weight and 
thermal resistance, when integrating TR cell and Hi-K plate in ASRG
We have validated the concept and want to discuss the integration of 

system with Radioisotope Convertor experts
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How to efficiently make use of the space waste heat?

17

 Radioisotope Convertors: waste heat around 100-200°C.

 In space, dark universe (3K) could provide a robust heat sink.

 The communication between the heat source and heat sink is radiation.

Thermo-Radiative Cell 
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Thermo-Radiative (TR) Cell Concept
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5800K

• Thermo-radiative cell was proposed by R. Strandberg (JAP, 2015)

• Net photon flux:  from cell to environment (TR cell)   vs. from environment to cell (PV cell)

• Generated current and voltage directions in TR cell are opposite to the PV cell
• TR cell is anticipated to have better performance at high temperature
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Thermo-Radiative Cell Performance 
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𝑻𝑻𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 = 𝟑𝟑𝟑𝟑

• The power density of TR cell increases rapidly with temperature.

• Predicted efficiency at peak power is 18%, almost 3X of MMRTG.  Could be much higher at lower power output. 
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If Integrated with ASRG
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16’’

• Waste heat is conducted from CSAF to the Beryllium housing.

• Current CSAF is made of Copper (TC=400 W/mK)

• Thickness of the CSAF is about ¼’’

• Inner diameter:   4’’

• CSAF height:   16’’

• Four of the 8 edges is in contact with Beryllium housing. 

* Some parameter values are based on estimation.

ASRG Dimension:   76cm * 46cm * 39cm



CERTIFIED | ITAR REGISTERED | IS9001 & AS 9100 

Performance Improvements When Integrated with ASRG
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Current ASRG

Hot Side 850℃

Cold Side 130℃

Efficiency 30%

Two GPHS 2*250 W

Each CSAF Dissipates 175 W

Edge of CSAF Temperature
113℃ (simulation)

CSAF 𝑹𝑹𝒕𝒕𝒕𝒕 0.097 ℃/𝑊𝑊

Beryllium Housing & Fins 𝑹𝑹𝒕𝒕𝒕𝒕
(including radiation)

0.629 ℃/𝑊𝑊

• We could integrate the TR cell on top of the Beryllium housing, 
and replace the copper (400𝑊𝑊/𝑚𝑚𝑚𝑚) by Hi-K plate (1200𝑊𝑊/𝑚𝑚𝑚𝑚)
to make the CSAF. 

• The surface emissivity of TR cell can be fabricated to be ~0.85, 
similar to the Beryllium housing emissivity. No or negligible change 
on the radiation thermal resistance.

• Using Hi-K plate to make CSAF can reduce 𝑅𝑅𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 from 0.097 ℃/𝑊𝑊
to 0.032 ℃/𝑊𝑊.  The total thickness of TR cell is 1/4” (including 
TIM layer).  The addition of conduction resistance by TR cell 
(~10W/mK)is much smaller than the reduction of CASF resistance 
by Hi-K plate. 

Conclusion:   1) Cold side temperature of ASRG will even be decreased if we use Hi-K plate to make CSAF. 
2) The weight increase by TR cell will be offset by weight reduction of using Hi-K plate.
3) And ASRG system will get additional 45W power output by TR cell integration



CERTIFIED | ITAR REGISTERED | IS9001 & AS 9100 

Performance Improvements When Combined with MMRTG 
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MMRTG

𝑇𝑇ℎ𝑜𝑜𝑜𝑜 = 530℃

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 200℃

𝑚𝑚𝑃𝑃𝑃𝑃−238 = 3.5𝑘𝑘𝑘𝑘

𝜂𝜂 = 6%

𝑃𝑃 = 110𝑊𝑊𝑒𝑒

If integrate TR cells with MMRTG fins,  assuming the cell 

temperature is ~450K, under ideal situation: 

• It could provide additional electrical power ~110W.

• It could boost the system efficiency from 6% to 12%, while 

the future e-MMRGT goal is 8%. 

• Or it could reduce the Pu-238 weight by more than 50% if 

still sustain the 110W output. 

It could also be integrated with mW-class Radioisotope Heating Unit (mW-RHU). 
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Proof-of-Concept Demonstration 
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Thermoradiative cell

Side View 
(within chamber)Whole system setup without chamber

During the tests, the cell (HgCdTe) is placed in a chamber, which has a 
low flow of dry nitrogen to reduce the humidity in the chamber. 
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Experimental Results (ON/OFF Response)
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Large signal generated 
when TR cell faces to 
a very cold surface. 

Negligible signal when 
TR cell suddenly faces 

to a RT surface. 

Example measurement at -50℃

• The cell is kept at room temperature (RT = 295K)
• The cold plate surface is change from RT to -150C (TR mode);   from RT to 80C (PV mode) 
• Output signal increases  from 0.3mV to 29.2mV (TR mode);    from 0.3mV to 81.1mV (PV mode)
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Measured Photocurrent in the Cell
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TR Mode

PV Mode

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 295𝐾𝐾

When 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  it works as 
Thermo-Radiative cell

When 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  it works as 
Photo-Voltaic cell

Cell physical area: ~0.01 mm2
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I-V Characteristics Measurements
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TR Cell

Thermocouples

Current & Voltage Wires
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I-V Measurement Results
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The TR cell short-circuit current is around 450𝑛𝑛𝑛𝑛, much smaller than previous 3𝜇𝜇𝜇𝜇, due to the larger band gap of  the cell. 
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Discussion

 We successfully demonstrated the validity of thermo-radiative cell concept via 
ON/OFF response & I-V measurement.  
 Currently at TRL 3

 Short circuit current increases from 60nA to 3𝜇𝜇𝐴𝐴 when the bandgap of cell 
(ambient condition, 0.01mm2) changes from 0.32eV to 0.21eV. 
 𝐻𝐻𝑔𝑔1−𝑥𝑥𝐶𝐶𝑑𝑑𝑥𝑥𝑇𝑇𝑇𝑇 p-n junction is used in our demonstration.  Bandgap can be tuned 

between 0-1.5eV, depending on 𝑥𝑥.  However, material fabrication may be 
challenge. 
 Plan to optimize the cell performance and fabricate a larger TR cell prototype 

(∅.5”) if we get Phase II funding. 
 Looking for support from NASA

 No communications with COTR
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